SOCIOEC [289192] – Deliverable 6.3

SOCIOEC

Socio-economic effects of management measures of the future CFP

Grant agreement no: 289192

Deliverable D 6.3

Minutes of the second Regional Seas case study meetings

Due date of deliverable: M22

Actual submission date: M28

Start date of the project: 03/2012 Duration: 36 months

Lead contractor: IFREMER

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

<table>
<thead>
<tr>
<th>Dissemination Level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PU Public</td>
<td>X</td>
</tr>
<tr>
<td>PP Restricted to other programme participants (including the Commission Services)</td>
<td></td>
</tr>
<tr>
<td>RE Restricted to a group specified by the consortium (including the Commission Services)</td>
<td></td>
</tr>
<tr>
<td>CO Confidential, only for members of the consortium (including the Commission Services)</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

SOCIOEC ...1
Socio-economic effects of management measures of the future CFP ..1
Deliverable D 6.3 ...1
Minutes of the second Regional Seas case study meetings ...1
SUMMARY ...3
1. Introduction ...4
2. Western Waters Case Study ..5
 2.1. Spain – Second round of conversations with Basque fisheries sector representatives 5
 2.2. UK - Interviews with Producers’ Organisations ..6
 2.3. France: Bay of Biscay mixed fishery-focus sole fishery - minutes of meetings with sole netters fishermen .. 9
3. Baltic Sea Case Study .. 15
 3.1. Germany – Focus group with stakeholders from the „Fischereigenossenschaft Fehmarn“ 15
 3.2. Denmark – Joint workshop organized by MyFish/SOCIOEC and Baltic Sea Advisory Council (BSAC) .. 18
4. Mediterranean Sea Case Study .. 21
 4.1. Italy – Demersal trawl fishery in GSA 17 (Northern and Central Adriatic Sea) 21
5. North Sea Case Study ... 23
 5.1. Introduction and aim .. 23
 5.2. Innovative management measure 1 and abstract 1 – Minimising conflicts in mixed-fisheries management using flexible Harvest Control Rules ... 23
 5.3. Innovative management measure 2 and abstract 2 – Management of the North Sea flatfish fishery: exploring alternative ITQ systems .. 24
 5.4. Agenda of the forthcoming North Sea RAC meeting ... 24
6. Pelagics Case Study - Minutes from the SOCIOEC pelagic case study presentation under the meeting “MYFISH Widely Ranging Fish stakeholder workshop” ... 27
7. References .. 29
SUMMARY

Objective:
The objective of Deliverable D6.3 is to provide an overview of the different meetings that have already been or will shortly be organised with stakeholders during the second year of the SOCIOEC project.

Rationale:
A number of meetings have already been convened between SOCIOEC scientists and stakeholders. While the scope and substance of these meetings differed substantially from one case study to another and across countries, these proved to be a useful opportunity to present some of the results already obtained during SOCIOEC (e.g., evaluation of fisheries management strategies as derived from WPS, sometimes concomitantly with the companion MYFISH project). All EU case studies were covered: Western Waters (France, Spain, UK), Baltic Sea (Germany, Denmark), Mediterranean Sea (Greece, Italy) and Pelagics (Denmark).

Teams involved in deliverable writing:
Thünen Federal Research Institute for Rural Areas, Forestry and Fisheries (TI-SF) Germany
Christian Albrechts University Germany
University of Copenhagen (UCPH) Denmark
Technical University of Denmark - National Institute of Aquatic Resources (DTU-Aqua) Denmark
Fisheries and Aquaculture Economic Research (NISEA) Italy
Agricultural Research Institute (LEI) Netherlands
French Research Institute for the Exploitation of the Sea (IFREMER) France
Centre for the Economics and Management of Aquatic Resources (CEMARE) UK
Université de Bretagne Occidentale (UBO) France
Marine and Food Technological Centre (AZTI) Spain
1. Introduction

A suite of meetings (including focus groups) has been arranged between scientists and fishery organisations representatives during the second year of the SOCIOEC project. The scope and the nature discussions differed across case studies and countries, as summarized below:

- **Western Waters**: presentation of the first WP5 simulations concerning the mackerel, horse mackerel and Bluefin tuna fisheries to the Spanish Basque offshore and inshore sectors, interviews of French and UK PO representatives around the quota systems they apply to their members;
- **Baltic Sea**: a German focus group where feedback was sought, both on the methodology and results of the impact assessment and on the Ecoocean game table, from the fishermen and the fishermen association manager; a joint SOCIOEC/MYFISH meeting in Denmark where some results of the DISPLACE model were shown to a wider variety of stakeholders from different countries involved in the Baltic Sea Regional Advisory Council;
- **Mediterranean Sea**: A meeting was convened between scientists and representatives of the Italian demersal trawl fishery in the Northern and Central Adriatic Sea. Simulation outcomes were presented to stakeholders, who were mainly asked to comment on the main assumptions of the model, and also to debate about relevant management aspects;
- **North Sea**: results of the evaluation of innovative management measures including flexible harvest control rules and alternative ITQ systems to be shown during the forthcoming North Sea RAC meeting planned the 7th July 2014;
- **Pelagics**: the results from an analysis of the economic gains that could be obtained by expanding the current management systems of herring and mackerel to be tradable across countries were shown to stakeholders during a meeting convened under the MYFISH project.

This report presents the minutes of the different stakeholders meetings that have already taken place within the SOCIOEC project, as well as the relevant background information that will support subsequent workshops (including focus groups) planned in 2014.
2. Western Waters Case Study

2.1. Spain – Second round of conversations with Basque fisheries sector representatives

Authors: Arantza Murillas, Martin Aranda (AZTI)

Western Waters Case Study: the Basque purse seine and trawl fisheries.

The second round of conversations has been developed with the main aim of receiving feedback and validate if possible the implemented first round of simulation developed within the WP5. In particular, the simulations are concerning the horse mackerel and blue-fin tuna fisheries carried out by the inshore sector. The fishermen representative of OPEGUI has been interviewed with this aim.

The inshore representative believes that catch limits for purse seiners in the mackerel fisheries did not perform well. The objective of improving prices was not achieved. There are too many fleets, being some of them quite new in this fishery. These fishing fleets supply too much fish to the markets without strict limitations on their limits. On the contrary, the Basque fleet faces a very strict control. This feedback validates the results coming from the first round of simulations developed for the mackerel fishery in the context of the WP5.

The implementation of the individual quotas for mackerel has been a demand from industry. The problem is that there are various different types of fleets with different fishing patterns and dependence on the resource. It requires a distribution of fishing possibilities within each modality. Management by individual quotas has begun in 2014. The quotas of the purse seiner fleet are being managed collectively in a common pool. In spite of this, each boat owner can request managers to administrate its individual share. Regarding the use of the collective share, the inshore representative says that once the individual quotas are pooled the allocation to all members is more or less linear since there is homogeneity between vessels. Except for some vessels that have a distinct pattern of fishing e.g. there are vessels that combine purse seining and pole and line along the year, while other fish only with purse seiners. The latter will have special treatment due to higher dependence on purse seining. The objective of managers to introduce individual quotas is to improve control. The sector expects that quotas will not be exceeded. Moreover, it is expected that the market will not be flooded with fish. The industry advocates the use of individual quotas that accurately reflect historical catches and economic dependence. The inshore representative considers that there are many fleets wanting access to species that had no interest in the past in order to accumulate catch records to receive rights in the future. The Basque inshore fleet claims the introduction of individual quotas for species such as bonito. In the case of anchovy, they are already requesting a system of individual quotas.

Regarding blue-fin tuna, the rationale of transferring the fishing quotas of the inshore fleet to tuna farmers in the Mediterranean was the small quota allocated to the fleet of Hondarribia. That is the reason that motivated the fleet to request manager’s permission to transfer quotas among fishing technologies. It is worth recalling that the inshore fleet has transferred quotas in 2012, 2013, and 2014. The restriction on quota transfers, which obliges quota holders to transfer quotas only for two years in a row, was published in 2013 and is applied since 2014. This means that the fleet must go
fishing since 2016. It is worth pointing out that all owners have agreed to manage quotas collectively. Obviously, there are boat owners who lose, while others win. Inshore boat owners agree to manage quotas collectively since fish trade is also done collectively, thus getting better prices. The inshore sector feels that is better to work together for all species. The inshore representative considers that in a scenario of larger quota for blue-fin tuna the priority of the sector should be to go fishing. However, the decision depends on the context, if market prices are too low or if fuel prices are too high they may consider transferring again the collective quota of the species to other fishing technologies. The transfer of the inshore quota to fishing technologies in other communities has shifted effort to other species such as bonito. This feed-back validates the results coming from the first round of simulations developed for the mackerel fishery in the context of the WP5.

In relation to anchovy, the inshore sector advocates the implementation of a Protected Geographical Indication (PGI) for anchovy. They believe this will increase the value of the anchovy of the Bay of Biscay. The PGI initiative has faced some opposition from large canning industries. They believe that the process of implementing the PGI might take at least two and a half years.

Offshore sector mackerel fishery

The offshore fishermen representative of OPPAO believes that the individual limit for mackerel did not meet the objective of improving prices. He thinks that this measure may have had some relevance for inshore boats but not for trawlers since they are only a handful of boats. Moreover, the regulation devised some rules that were unclear, bringing about problems at the time of implementation. For example, there was not a clear specification on the application of the limit of 8,000 kg/day. There were some fines for vessels that, having caught 6,000 kg/day in a 3-day trip, landed 18,000 kg in a single day. So there was a problem with the interpretation of limits on catches and landings that ended up in a judicial process.

The offshore representative considers that the new ITQ for mackerel has been implemented by the government with the aim of improving control. This is each vessel is allocated a share of the quota based upon their historical catches. He does not think that this system will help improving prices. There are many other factors influencing fish prices such as, for example, imports from other EU member states and elsewhere. The quotas for Basque trawlers are too small and foreign fish in the market may bring prices down. Moreover, the Basque offshore sector supplies fresh fish market. So they have not the option to freeze fish and store it to wait for better market conditions. They will be always subject to market conditions. In relation to the management of individual quotas by the Producer Organizations (POs) the representative manifests that each boat owner manage his own individual quota. They do not manage the individual quotas collectively.

These comments validate the results coming from the first round of simulations and provide evidence about the future success of the new management system.

2.2. UK - Interviews with Producers’ Organisations

Author: Aaron Hatcher (CEMARE, University of Portsmouth)
Introduction

Interviews with individual PO members are ongoing in the field. Below is a brief summary of recent face-to-face interviews held with the PO officers.

Cornish Fish Producers’ Organisation (CFPO)

Membership

Around 110 over 10 m vessels (paying 0.75% of grossings, incl. VAT). Around 80 under 10s paying a fixed levy based on VCUs. Under 10s get representation (CFPO is an NFFO member organisation) general support, training, minimal levy (and free lifejackets). They also now get help with quota leasing.

Entry/exit qualifications/barriers

None for the under 10 m. For the over 10 m the Fixed Quota Allocations (FQAs) are important but each application looked at on a “case-by-case” basis. They don’t want to dilute the pool but there is a lot of flexibility, e.g., swapping quota in/out to make adjustments as necessary.

Allocation/management

Pure pools for new quota spp., e.g., deep sea stocks, and skates/rays for which there are no individual FQAs, only PO allocations. There is some concern amongst the membership about track records and the allocation of FQAs for these stocks. Otherwise, the PO has operated a pool-plus system for about 10 years. Top-ups are generally leased in but where members have bought FQAs these are effectively allocated as IQs. Note that if a vessel is sold, the licence entitlement remains and the FQAs can then be sold separately. Sometimes licences are bought for aggregation and the FQAs sold on. FQAs can be “parked” on a PO dummy licence.

Trading

The PO helps with leasing and arranges swaps as necessary. Long leases are arranged in the expectation that the MMO will reconcile FQAs soon. Paul T. is a Director of the Dutchy Fish Quota Co. which has its own dummy licences. The PO has also bought FQAs and parked these. The money is raised from the levy and also borrowed from the bank. This quota can be leased out both internally and externally. Some boats have sold their FQAs internally and then agreed not to fish for quota spp., e.g., shellfish boats. The PO office thinks ITQs would make things easier, but they still see a role for pools and “PO quota”.

Monitoring and enforcement

The PO monitors logsheets and landings declarations. They will notify members and help them get extra quota if necessary. No verification of accuracy however.

Discards/by-catch

The PO works with CEFAS/MMO on gear selectivity. The PO has had one local vessel in the catch
quota trials and one beamer in Brixham.

General management aims/objectives

Sees objective as maximising the value of quota and of members’ fishing in general (managing its quota holdings). The PO provides a lot of marketing information/advice to members, e.g., where prices are strongest (which may include French ports).

Decision-making

The PO has 4-5 Board meetings per year. Members are elected or co-opted. The Board takes major decisions, e.g., moving to pool-plus. Day-to-day decisions (e.g., catch limits) are taken by the office (CE and Asst CE) with the assistance of QM software developed at CEFAS. The PO liaises with CEFAS, MMO, etc., representing the membership but also Cornish fishing generally, e.g., with regard to MPA decisions.

South Western Fish Producers’ Organisation (SWFPO)

Membership

Some members have vessels in both the SWFPO and CFPO. Around 8 under 10m vessels (Looe, Brixham, East coast/Thames estuary) joined for quota management (leasing in quota). Includes one vessel whose quota is managed by the PO (they can elect to do this with the agreement of the MMO). Around 70 over 10m vessels, of which over half are inshore trawlers, the rest beamers/scallopers. Most beamers are also scallopers; around 15 are scallop dredgers only. The main port is Brixham, also Shoreham, Mersea Island (Thames). There are 9 Scottish scallopers and 2 Welsh beamer/scallopers. There are a few Channel Islands trawlers.

Entry/exit qualifications/barriers

The PO operates a pool for the inshore trawlers, so the FQAs of these vessels are looked at. Otherwise, owners join as IQ members and must have/acquire quota as necessary to cover landings. The PO helps members to find quota but does not get directly involved in trades except to arrange swaps as needed. There are international swaps (via MMO) with POs in other countries (mainly Belgium). One member owns 2 Belgian beamers.

Allocation/management

Members fishing against the “inshore” pool can lease in extra quota to top up and can hold IQ on the PO’s (single) dummy licence. The dummy licence also holds the PO’s quota - this is partly the 2.5% extra created when FQAs were introduced which the PO kept back for communal use. This has been added to with the FQAs from a couple of decommissioned vessels.

Trading

The PO only acts as a facilitator. The PO seeks and actively presses for at least annual reconciliations of FQAs and would like to see real-time movements of FQAs.
Monitoring and enforcement

The PO has access to the MMO’s electronic logsheet “hub”. The PO does get sales notes from BTA but otherwise monitoring is all electronic. The PO has no enforcement role other than a responsibility for correct grading.

Discards/by-catch

Discards are mainly juveniles rather than over-quota fish. A discard ban is considered manageable “if the quota uplift is sufficient” and the ban is not extended to non-quota fish. Four beamers are taking part in the catch quota scheme this year (and last). The “uplift” (?) went from 30% a year to 15% over 6 months. Note that no scallopers are in the pool - all are IQ members and hence are required to lease in quota as needed. EU rules specify max. 5% non-molluscs and Cat. A/B licences allow quota species within the 5%; Cat. C licences require all quota species to be discarded.

General management aims/objectives

A member of the scallop industry consultative group expressed interest in scallop management (doesn’t hold with the WW effort regime), and was keen to encourage selectivity and reduce discards, particular relating to juveniles.

Decision-making

Pool monthly limits are determined in the office based on relevant information. There is an AGM and Board meetings roughly every two months. The PO is regularly consulted by the MMO/DEFRA.

2.3. France: Bay of Biscay mixed fishery-focus sole fishery - minutes of meetings with sole netters fishermen

Authors: Bellanger M. (Ifremer), Guyader O. (Ifremer), Jouanneau C. (IFM), Lavialle G. (Ifremer), Le Floc’h P. (UBO), Macher C. (Ifremer)

Introduction

One of the major recent trends in the European fishing sector has been the increasing role of the fishermen cooperatives (e.g. Producer Organizations –POs) in quota management. In France, the central administration has gradually transferred the allocation procedures of quotas to POs, as a co-management by delegation. In view of quota over-consumption situations, POs have had to introduce new rules within their organizations to impose limitations on individual consumption by species. The implementation of this scheme of individual fishing rights, initiated in 2006 and fully effective from 2007, reflects the European debate on transferable fishing concessions (TFC) within the third reform of the CFP. Minutes of the second regional meetings with fishermen aims to explore how they reflected upon individual fishing rights, taking into account their experience with individual quotas on the sole fishery.
In the French experience, individual quotas are not transferable via the market but can be adjusted by POs. However, in light of the emerging parallel market of quota valuation encountered in this study, it is legitimate to ask whether public leasing at the scale of POs is a sustainable system for the French fisheries; or whether the recently implemented system is on a slippery slope towards a privatization of the market. Answering to this question requires first a preliminary analysis on a sample of individual vessels for which quantitative data is available (seasonal landings and annual economic performance). A more extensive enquiry has been conducted with fishermen, with a face-to-face interview based on performance and governance issues related to the management measures used since 2006 for the sole fishery.

Quantitative data

A panel of ten sole netters has been selected for a preliminary analysis based on quantitative data, landings and bookkeeping. Data sources on sole landings are informed from IFREMER Statistics department (monthly auction market data and direct sales). Bookkeeping data has been collected by the Regional Economic Observatory of Fisheries in Brittany, a non-government organisation created by professional fishers in 1992. Netters are classified according to the overall length, vessels 1 to 4 belong to the larger segment (15-20 meters) and vessels 5 to 10 are under 15 meters (the smaller unit is 9 meters length). Crew size ranges from 3 to 6, five vessels operate with 5 fishermen.

The vessel quota system established by POs under a co-management system cannot be assessed without considering the multiannual management plan implemented in 2006 (EC N° 388/2006) and other CFP measures regarding capacity adjustment but also compliance. A survey with the nine POs concerned with the Bay of Biscay Sole was conducted in the framework of SOCIOEC (Socioec 2012, D6.0.1) to describe governance measures used for the quota management, the evolution of the system and the drivers and consequences of these evolutions. The first two POs which have tested their own individual quota system were From Bretagne and PROMA, merging in 2008 under the name of Pêcheurs de Manche Atlantique (PMA). The second regional meetings with stakeholders concerned only fishermen members of PMA. Quantitative data are presented for the three years before the full implementation of individual quota for the sole fishery in the Bay of Biscay (2004-2006), and for the first four years from 2007 to 2010.

Landings

The first four vessels, ranging from 15 to 20 meters, produce 20 to 40 tonnes of sole each year with a high variability according to fishing strategies (Figure 2.3.1). The winter season, from January to March, is marked by the highest level of landings. Three vessels out of four concentrate half of annual landings in Winter, between 80 and 100 % since 2008 for the first two units, which is unusual over the study period 2004-2010. It could be a straightforward impact under the IQ regime imposed by PMA in 2006 and operative since 2007. As a result, fishing effort is less directed to sole in Autumn for the first two units.

The smaller segment, represented by the five others vessels under 15 meters, spread the sole production (under 20 tonnes a year) over the first three terms (80% of total landings).
strategies reflect more heterogeneity between vessels. Units 6 and 9 behave as the biggest producers, concentrating two thirds and more of sole landings during winter season. Their annual production ranges from 4 to 10 tonnes, indicating that the allocated IQ by PO is quickly reached. The question addressed to units concerned with an exhausted IQ at the beginning of the year is the reallocation of the fishing effort on others species.

Figure 2.3.1 – Sole landings in kg for ten netters (members of the French PO PMA)

Source: IFREMER

Annual Economic performance

Economic performance is assessed from landings value (€), gross profit (€), crew share per capita (€) and gross profit/landings value in %. Gross profit is computed as the difference between landings value, operating costs and labour costs (Figure 2.3.2).

As expected, landings value is proportional to production capacity (measured in length) with a range between 500 thousand euros to 900 thousand euros for the first four units, and from 100 thousand euros to 400 thousand euros for the five smaller vessels. In term of gross profit, results do not follow a hierarchical production capacity. Vessels 2 and 4, considered as large producers, register scores similar to the small-scale units, around 30 to 60 thousand euros. More surprising, unit 6 seems the more profitable fishing company. Economic performance, measured from short term profit (only based on production and running costs), is not simply related to the sole fishery. Results derived from bookkeeping can be irrelevant in measuring short-term performance when non-wage labour is a major input such as crew share and owner revenue (based on gross profit) are not separated (as illustrated for unit 6 displaying the lower level of crew share per capita). For the others units,
payments received by fishermen are very closed, from 50 to 60 thousand euros a year for the first two vessels, 30 to 50 thousand euros for units 3 and 4, and 20 to 40 keuros for the following (excepted unit 6). Finally, global performance is estimated as a ratio (%) between gross profit and landings value. Short term return on fishing activities rises up to 25% (vessel 3 in 2006). Performances are stable over the period for units 1, 7, 8, 9, with none real impact with the IQ implementation in 2007.

Figure 2.3.2 – Economic performance for ten netters (members of the French PO PMA)

Source: Observatoire Economique Régional des Pêches de Bretagne

Interviews

A guideline supporting face-to-face interviews was developed around two drivers (Table 2.3.1). The first driver was related to performance and fishing strategy. Fishermen were questioned on the quota share they officially received from the State after the implementation of the "Arrêté 2006" by the Ministry of Agriculture and Fisheries, which had determined quota allocation on the basis of the vessels’ catches between years 2001 to 2003.

The second driver was dealing with governance issues, investigated through potential implications of fishermen in professional organizations or within their fishing communities. The Bay of Biscay sole fishery is exploited in France by producers located all along the Atlantic coast: in the North (Southern Brittany), in the center (Vendée) and in the South (Arcachon, Saint-Jean de Luz). Seven fishermen were interviewed over the period February to May 2014. All of them were based in one of the three main home ports of Southern Brittany (Le Guilvinec, Concarneau and Lorient) and were part of the Produceurs' Organization PMA, located in Southern Brittany.
Table 2.3.1 - List of fishermen interviewed

<table>
<thead>
<tr>
<th>Fisherman's name/Vessel's name</th>
<th>Home port</th>
<th>Date of the interview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gérard Gosselin/Ton Kel</td>
<td>Le Guilvinec</td>
<td>18 February 2014</td>
</tr>
<tr>
<td>Patrick Le Douce/Mestelen</td>
<td>Concarneau</td>
<td>25 February 2014</td>
</tr>
<tr>
<td>Didier Couvelard/Fleur des vagues</td>
<td>Lorient</td>
<td>9 April 2014</td>
</tr>
<tr>
<td>Patrick Ollivier/Galvar mor</td>
<td>Concarneau</td>
<td>10 April 2014</td>
</tr>
<tr>
<td>Didier Gouyec/Berceau de l'Océan</td>
<td>Concarneau</td>
<td>10 April 2014</td>
</tr>
<tr>
<td>Ludovic Bertin/Les Océanes</td>
<td>Lorient</td>
<td>23 May 2014</td>
</tr>
<tr>
<td>Stéphane Kergrene/La Gavraise 2</td>
<td>Lorient</td>
<td>24 May 2014</td>
</tr>
</tbody>
</table>

Management measures for the sole fishery in the Bay of Biscay have been decided in 2006 within the PO (PMA). This decision was thus made independently of the State decision (Arrêté 2006) that was clarifying how quotas would be allocated by vessel: “landings track records were thenceforward assigned to the vessel-producer partnership (…) and became fixed on the basis of the average of historical landings recorded by these vessels for the period 2001-2003” (Larabi et al., 2013). In reality, sole quotas have been allocated by PMA to each vessel according to a more recent period, and case by case adjustments were possible. Overall the rules used by POs were more flexible compared to the official individual quota allocations under the Arrêté 2006. Moreover according to our respondents the PO's informal system seemed to run efficiently inside the PO, yet it there were uncertainties about the becoming of individual quotas in case a vessel-owner would leave the Producers' Organization.

Fishing authorisations are officially delivered by the State with a minimum set to 2 tonnes a year for the sole fishery. The State has the exclusive right to transfer the fishing authorisations, a right it can delegate to POs which benefits from more responsibilities since the Marine Fisheries Act of 1997 (Larabi et al, 2013). Fishermen themselves are not allowed to transfer (with or without financial compensation) the official allocations given by the State.

The results obtained from both quantitative data from landings and economic performances of the vessels; and qualitative interviews with owners of these vessels are presented in four points, (i) the level of knowledge on the motives for individualising fishing rights, (ii) information asymmetry between producers, (iii) transferable fishing concessions, (iv) impacts on fishing behaviour.

(i) the level of knowledge on the motives for individualising fishing rights
The official share of quotas based on historical landings track records (2001-2003) was known by fishermen but not really understood. In reality, the individual quotas implemented by POs since 2006 were not calculated on the same basis but with rules proper to each PO. As a result fishermen interviewed for this study were confused with this unclear situation as to how quotas should be attributed (i.e. official or unofficial rule); yet they were well aware with the rule imposing fishing authorizations delivered by the State (or delegated to the POs) from a 2 tonnes sole landings per year

(ii) Information asymmetry between producers
Fishermen seemed confident with the IQ regime managed by their PO (PMA), yet they claimed more transparency on possibilities for adjustments. It was unclear to vessel owners whether they were allowed to negotiate catch shares when another member from the same PO was selling the vessel, exiting the organisation, or switching from sole métier to another fishing activity. Currently fishing
authorizations (officially attributed by the State) are used as official support for negotiating the vessel price yet the reality of the quota transfer system goes further in the individual allocation of quotas. Most of producers have well accepted IQ and admit the sole fishery is under a good management scheme due to flexibility within the PO for adjusting the level of landings all along the year and offering to vessel owners a certain autonomy in the management of their quotas.

(iii) **Transferable fishing concessions**
It is legitimate to ask whether public leasing at the scale of POs is a sustainable system for the French fisheries; or whether the system of individual quotas that is currently developing "under the cover" could lead to a privatization of the market. French fishing community, composed in majority of small-scale fishermen, have always been strongly opposed to the implementation of individual quotas, which have proven in several countries to lead to a concentration of fishing rights into the hands of the biggest vessel owners (Région Bretagne, 2010). However it seems that the issue has not yet been discussed under such angle. Fishermen we interviewed did not reject transferable fishing concessions or Individual Transferable Quotas (ITQ). In their opinion ITQs could be acceptable if specific rules would impose to maintain fishing rights in France. They admitted that without an official market for transferable fishing concessions, unofficial quota exchanges with financial compensation would be unavoidable.

(iv) **Impacts on fishing behaviour**
Most fishermen acknowledged strong impacts of the progressive implementation of IQ on fishing behavior. The implementation of IQ has become necessary following the over-consumption of sub-quotas allocated by the State to POs. As a consequence, fishermen had to adapt their fishing strategy either by increasing their fishing effort on sole fishery, or diversifying their activity. In any ways, reallocating the production on others species was necessary. This is in accordance with interviews led by Ifremer with official representatives of POs (deliverable 53) who declared that "fishing effort reallocation has occurred as a result of individualization of landings, and/or the fact that sole production is more frequently spread over the year". The larger sole producers (over 15 meters length) concentrate their activity during the winter season (January to March), reporting fishing effort on other species such as sea-bass, pollack, hake or monkfish. Netters operating in small-scale fisheries (under 15 meters) target sole all along the year.

In some cases, economic performance and/or fishing strategies have been impacted, constraining or encouraging vessels' owners to reallocate their fishing effort during the winter season (term 1, from January to March), with a report on others species (seabass, monkfish, hake, pollack).

1 The report delivered by The regional council of Brittany (Région Bretagne, 2010) stipulates that fishermen fear a concentration of fishing rights with a ITQ system (p31).

2 Regulation (EU) No1380/2013, (35) “In view of the precarious economic state of the fishing industry and the dependence of certain coastal communities on fishing, it is necessary to ensure the relative stability of fishing activities by allocating fishing opportunities among Member States, based on a predictable share of the stocks for each Member State”.
3. Baltic Sea Case Study

For the Baltic Sea Case Study two meetings have been arranged, one in Germany and the other one in Denmark. The German meeting refers mostly to the study of the fisheries around the island of Fehmarn, and involved fishermen and the manager of a fishermen cooperative. The meeting in Denmark gathered a wider variety of stakeholders from different countries involved in the Baltic Sea Regional Advisory Council BSRAC.

3.1. Germany – Focus group with stakeholders from the „Fischereigenossenschaft Fehmarn”

Author: Leyre Goti (TI-SF) and Jörn Schmidt (CAU)

Introduction

A focus group took place at the „Fischereigenossenschaft Fehmarn” headquarters in Burgstaaken, the port area of the main town in the island of Fehmarn (Burg auf Fehmarn) in the northern coast of the German state of Schleswig-Holstein. The meeting occurred on the 19th May 2014 in the afternoon and lasted just over two hours. Apart from the two researchers from the project, the group was formed by three professional fishermen and the director of the fishermen cooperative. All three fishermen use gillnets as their main gear (though some used other gears too, as traps) and operate vessels smaller than 12m of LOA.

The objective of the meeting was to present the project, seek feedback both on the methodology and results of the impact assessment and introduce the Ecoocean game table to the fishermen and the fishermen association manager. The impact assessment focused on the consequences of the implementation of temporary closed areas and technical measures previously agreed in a memorandum between the fisheries management (the state of Schleswig Holstein’s ministry for fisheries), the fishermen representatives and a scientific institute. These management measures were not aimed at the protection of the fishery, but instead they want to protect the harbour porpoise and the seeducks (mostly common eider).

Minutes of the focus group on the German fisheries around the island of Fehmarn

First the latest results of the impact assessment of the management measures for the island of Fehmarn were presented. Scenarios of the impact assessment included status quo and two management proposals: the initial proposal of the ministry to close the gillnet fishery eight months and the later proposal to set a more flexible closure in winter and reduce the width of the net for a certain period in the summer. Estimations of foregone revenues and profits were presented for those three scenarios, as well as for different pricing hypothesis for the landings that were marketed directly, for which there are no official price data. The main hypothesis for price was that the fish that is marketed directly reaches a price at least as high as the highest price of those that are marketed through the auction.

The issue of the formation of prices was discussed, mentioning different marketing costs subtracted from the price as well as charges by the cooperative, the auctions and other institutions. In some
cases catches that are marketed directly would also be charged with a fee. The fishermen expressed the opinion that the hypothesis of “highest auction price” in our impact assessment did not yield sufficiently high estimated revenue, based on their experience on income (and costs) from their vessels in the last few years.

The fishermen recognised that more and more they are turning to direct forms of marketing. They do not like the extra work that it implies (e.g. filleting on board) but they accept that it is a way to increase their revenue. They also agree that it is a good thing that the fishermen cooperative does not restrict them on doing this, as other cooperatives and producer organisations do. The fishermen also highlighted the fact that recreational fishermen using professional gear (mostly retired professional fishermen) are competitors in the direct marketing of catches, making them lose potential customers as the recreational fishermen come faster to port. The right of these fishermen to sell their catch was also discussed.

The extent to which the closure areas overlap with the fishing grounds of the gillnetters was also discussed by the focus group. Limiting factors affecting the choice of fishing ground of these fishermen to areas around the island of Fehmarn include technical limitations (safety regulations restrict the range of some vessels), characteristics of seabed (stone is needed to set the gillnet), fuel costs, competition from fishermen in other areas and de facto closed areas where fishing traps are set (e.g. in the north east coast of the island), among others.

Costs where checked with the fishermen for accuracy of data, and the inaccuracy of some items as fuel data or crew cost data was pointed out. The data for the smallest vessels was considered too low, as some of the fixed costs as for example insurance were said to be similar for the vessels in the length ranges 0-8m and 8-12m.

The fishermen were asked about their preference with respect to the different management measures scenarios, to which they answered that they prefer the status quo. Their opinion was that the species for which protection was seeked were already being avoided by the fishermen, as their incidental catch constituted costs for them, and that further investigation was needed as current information was not sufficient to evaluate the gravity of these bycatches. To suggest new measures, the fishermen commented that any closures accompanied by compensatory payments for the fishermen would be more appropriate.

Follow up telephone contact has been held with the manager of the fishermen cooperative, and his guidance on data and expertise availability from other stakeholders was especially useful. This has developed into further contacts with the Federal Office for Agriculture and Food (the Bundesanstalt für Landwirtschaft und Ernährung, BLE), the fisheries department of the German BG for transport and traffic (employers mutual insurance association, Berufsgenossenschaft für Transport und Verkehrswirtschaft, BG Verkehr) and the fisheries promotion department from the land of Schleswig-Holstein’s State Agency for Agriculture, Environment and Rural Areas (Landesamt für Landwirtschaft, Umwelt und ländliche Räume, LLUR).

Minutes on the presentation of the game table Ecoocean

During the meeting, the present fishermen were asked to explore and comment on a new, updated version of the internationally very successful “ecoOcean” game (www.ecoocean.de). The objective
was to explore how the fishermen see such a game. Is it just a fun activity where they would be hesitating to engage with or do they see it as a useful activity?

The pre-prepared scenario, which they played, had two different age classes of fish (different sizes) in the ocean with different distribution (greenish and blue hexagons respectively in Figure 3.1.1). All players can choose between two different nets (larger and smaller mesh size) at the beginning of the game. This determines the catchability of adults and juveniles respectively. Two players have a landing obligation for by-catch (discard ban) and two do not (Figure 3.1.2). The players with landing obligation have to store on board and then land all undersized juveniles and get a lower price for them, representing a major current topic in fisheries management.

The fishermen responded positively and liked the general setup of the game. Some technical points were discussed, such as fishermen in the game representing trawlers, whereas they themselves are mostly using static gear and smaller vessels. Different storing capacities could also be simulated in the future to represent for example smaller vessels, which would in turn imply more frequent trips to port to unload and therefore more steaming time and less time for fishing. Furthermore, they felt that the decision on the net is something that cannot happen in reality because of the strict legal requirements, which exist. The comments were very helpful, in order to adapt the game set-up for up-coming meeting. Adaptation to different groups of gamers (stakeholders) was explicitly taken into account when constructing the software-frame and can easily be done.

Nevertheless, the game is able to show the general issue of gear selectivity and catch distribution (in a very simplified way). The fishermen believed the game to be a good tool to get engaged with the general public.

![Figure 3.1.1. ecoOcean scenario for demonstrating by-catch and discard issues. The greenish hexagons represent adult fish, whereas the smaller blue hexagons are juveniles. The player has a home harbour, a storage limit and a quota.](image)
Figure 3.1.2. The red player on the left has a landing obligation, i.e. he has to land the undersized fish, the green player on the right doesn’t. Hexagon fields with ‘dead fish’ symbols indicate overexploited areas.

3.2. Denmark – Joint workshop organized by MyFish/SOCIOEC and Baltic Sea Advisory Council (BSAC)

Authors: François Bastardie (DTU-Aqua) and Rasmus Nielsen (DTU-Aqua)

The DISPLACE (Dynamic Individual vessel-based Spatial Planning and effort displaCEment) approach (www.displace-project.org) has been presented to the Baltic Sea Advisory Council (BSAC) at a special BSAC workshop the 26th June 2014 in Copenhagen in order to get feedback on the relevance of the approach and its evaluation of innovative management measures in form of potential fishing closures in relation to areas designated for renewable energy and nature conservation use from the perspective of the stakeholders. The DISPLACE model-based approach aims to incorporate the full complexity of the fishing effort application and of various fishing gear type, individual vessel catch power, individual trip planning and fuel costs, and simulating potential spatial-temporal fishing effort reallocation given various closures at the individual scale, and the interlinked consequences on i) the size-based dynamic of the harvested stocks, the sustainability of and the economic viability of the exploitation by different vessels and fisheries (metiers), and on ii) the underlying benthic sensitive habitats. The complexity of the model is in line with the newest available data (fine scale mapping of heterogeneous fishing activities from VMS data coupled with logbooks ‘declaration, and benthic habitat mapping) – all brought together within the same simulation framework.

The specific purpose of DISPLACE for the Baltic application is to contribute to the Maritime spatial planning (MSP) negotiations when, from the perspective of the fisheries, the marine catch sector is faced with additional potential fishing closures which require empowering the fishing industry and
managers with the right tools and knowledge to engage in MSP dialogues. DISPLACE conducts socio-economic impact assessment of planned offshore windmills farms and conservation zonation in the Baltic Sea with a dynamic, complex, stochastic and individual-based approach, which can identify ways for compensation including effort allocation and cost-efficient fishing practices. The DISPLACE approach was presented to the BSAC as a support tool for fisheries and management for facilitating the understanding of the complex biological and technical (interacting) dynamics, reproducing observed patterns and evaluating alternative management scenarios.

The ongoing Baltic Sea application was presented to the BSAC with special focus on the effect on the vessel economy (Danish, German and Swedish vessels) of the ongoing and/or emerging spatial restrictions (NATURA 2000 zonation and offshore windmill parks) which may constrain the fishing activities significantly in the area (Figure 3.2.2). That is for example for the important cod, sprat and herring fisheries when the individual effort is displaced in reaction to the various management scenarios in spatial restrictions and under various fish stock productivity levels.

The level of complexity and detail in the approach was well-received by the BSAC participants during the workshop. It seems to them adequate to account for relevant short- to medium term effects on the fisheries keeping the projections into a reasonable time frame given some potential externalities (fish price dynamics, etc.). Some worries were expressed concerning the lack of coverage for the small-scale fisheries when vessels smaller than 12 meters are actually not handled within the model (because of lack of VMS data for these vessels) while these vessels can actually constitute the most stressed vessels by the spatial restrictions (low mobility) given the model output indicating highest effects on smaller vessels. It was, however, noted that smaller vessels are actually most gillnetters which are likely to not be directly impacted by spatial restrictions given Natura 2000 conservation and windmill platforms (this needs to be defined in the spatial management plans). The worst-case scenario has only be investigated so far with the DISPLACE model, i.e. that all fishing is prohibited within a given (potential) restricted area. Some mitigations are likely to be implemented for only particular fisheries (e.g. pelagic or gillnetting), and the impacts will not be as severe as in the worst case scenarios. In line with this, the BSAC secretariat communicated a relevant ongoing proposal for mitigation in this area to be included as well.

In conclusion, the BSAC can see the relevance to learn more about the approach, sit down with a DISPLACE expert, and run different spatial management scenarios under DISPLACE given the stakeholder perception of the fisheries and the stock dynamics as well as placement of the most efficient closures covering the different objectives and trade-offs with the closures. Ultimately this would require developing a user-friendly interface that would allow such a dynamic use between scientists and stakeholders. It was at the workshop recommended that work should also cover development of a more user-friendly model interface over time.
Figure 3.2.2. A snapshot of the Baltic proper simulation illustrating the three stocks underlying resource layers, the NATURA 2000 zonation and the windmill farms sites, and individual Danish, German and Swedish vessels used by DISPLACE.
4. Mediterranean Sea Case Study

4.1. Italy – Demersal trawl fishery in GSA 17 (Northern and Central Adriatic Sea)

Author: Loretta Malvarosa (NISEA)

The involvement of relevant stakeholders for the demersal trawl fishery in GSA 17 has been pursued throughout the whole project. A first meeting with stakeholders was held in Ancona, on September 2013, having the aim to select the relevant management measures to be simulated, as well as the main objectives and related indicators. After the first round of simulations, relevant stakeholders, such as fishermen associations representatives, local operators and scientific representatives, have been informed regarding the main assumptions of the simulation model and the preliminary results. The meeting was held in Ancona, at the CNR/ISMAR (Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine) premises on May 31th, 2014. Different stakeholders attended the meeting: PO representatives, fishermen association, SMEs, scientists from FAO/Adriamed project, from OGS of Trieste (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and CNR/ISMAR (the agenda as well as the ppt used for presenting the results have been uploaded on https://basecamp.com/1793003/projects/182042/attachments).

At the meeting, the stakeholders discussed the simulation outcomes and gave further input to improve the quantitative analysis. Those inputs will be used to refine subsequently the model assumptions and the estimation of model parameters. Stakeholders were mainly asked to give their opinions/suggestions on the main assumptions of the model, such as the biological module and the fishermen behavioural module. They were also asked to comment a) the quantitative definition of the effort quota; b) the criteria of quota transferability among fleet segments, and c) possible criteria of quota transferability among different geographical areas (not only within GSA17).

The meeting was also an opportunity for stakeholders to debate about relevant management aspects deriving from such a change in the management system: an effort quota system has never been implemented before and this is only a scientific proposal highly supported by local stakeholders. Indeed, beside discussions on the main assumption impacting the simulation the meeting has given the chance to discuss on related aspects such as control measures, co-management issues, etc.....

The main comments/suggestions given by the stakeholders can be summarized as follows:

- Try to improve the biological model underneath the simulation. The simulation model was based on a catch-effort model (Schaefer) as a consequence of the difficulty, faced during the first round of simulations, to collect the biological data necessary to use a more reliable model. The main problems regarding the use of the Schaefer model are related to 1) the use of generalized effort data, not species specific; 2) the Schaefer model does not take into account the effects of changes in catchability (technological progress); 3) the catch-effort data used in the model shows a good condition of most of the target species of the demersal trawlers in GSA17, which is in contrast with the output of the main stock-assessments produced by the STECF sub-groups. Indeed, many STECF WGs report a situation of overexploitation for the main demersal species in GSA17. To overcome these problems, a commitment to help in finding more detailed biological data and in...
changing the main biological assumption beneath the simulation model has been agreed.

- Use a more detailed fleet segmentation. In the first round of simulation demersal trawlers have been grouped into three fleet segments: lower than 12m, between 12 and 24m, and between 24 and 40m. All the stakeholders present at the meeting have highlighted that vessels classified as bottom trawlers 12-24 are too much heterogeneous and suggested to split this group into two sub-groups: trawlers between 12 and 18m and trawlers between 18 and 24m. The second round of simulation will consider these two different groups, also in accordance with the DCF segmentation.

- Some operators present at the meeting suggested to take into account market mechanisms, especially those aspects related to the role of unsold seafood products as well as those aspects related to the different price that the fishes have on the market according with the week days when they are sold (it happens that the ex-vessel price is different, lower, on Friday than at the beginning of the week). Furthermore stakeholders offered to give their availability to help in finding auction markets’ data in order to adjust the model accordingly and take more deeply into account changes in the price elasticity (possibility to use data from the auction markets of Ancona and Chioggia).
5. North Sea Case Study

5.1. Introduction and aim

In relation to the SOCIOEC WP5 (Del. 5-5), there have been conducted quantitative evaluation of different innovative management strategies for the North Sea demersal consume fisheries. This covers bio-economic simulations to a) explore the impacts of changing the trade mechanisms and trade structure of individual quotas, e.g. socio-economic effects of international quota tradability, and b) evaluate harvest rates, resource rents and landing sizes for several management strategies covering different fleet specific effort levels in the mixed demersal consume fisheries according to stock/species specific landing quota and MSY (maximum sustainable yield) levels. The specific simulations are detailed in the abstracts below (Sections 5.2 and 5.3).

The aim has been to explore and conduct in depth analysis of some relevant management scenarios to obtain feed-back from relevant stakeholders on the output from the simulations, as well as on the frame conditions set and assumptions made in relation to the simulations.

To obtain this feedback a row of presentations to the NSRAC (North Sea Regional Advisory Council) have been made during the first half year 2014 which is concluded with a joint EU FP7 SOCIOEC and MYFISH workshop with presentation and discussion of the results during the NSRAC meetings the 7-8 July 2014 in The Netherlands. The Agenda for the NSRAC workshop is given in Section 5.4.

Based on presentations of the simulations, as described in the below abstracts, there will be obtained feed-back from the NSRAC with focus on the specific issues given in the workshop agenda. This feed-back will be used, reported and discussed together with the results of the quantitative evaluations of the innovative management measures under the SOCIOEC WP5.

5.2. Innovative management measure 1 and abstract 1 – Minimising conflicts in mixed-fisheries management using flexible Harvest Control Rules

Authors: Clara Ulrich (DTU-Aqua), Paul Dolder (CEFAS), Ayoe Hoff (University of Copenhagen), Alexander Kempf (TI-SF), Jan-Jaap Poos (IMARES), Anna Rindorf (DTU-Aqua), Youen Vermard (IFREMER)

When different species are caught together in mixed-fisheries but are managed under single-species management plans may lead to TACs of some species being exhausted before other. This leads to conservation and socio-economic problems in fisheries, where agreed harvest levels cannot be obtained for some stocks, while other stocks may be overharvested, and catches may be discarded by fishers on board. Socio-economic problems become more serious if landing obligations are put in place and discarding is no longer allowed. One way forward would be to develop integrated and flexible harvest control rules, where annual targets of fishing mortality by stock would be those minimizing mismatches across the sets of TACs and reducing risks of adverse economic incentives, within the range of those achieving “Pretty Good Yield” around MSY targets. In this study, we do simulations for the demersal fisheries in the North Sea. These simulations evaluate the harvest rates, resource rents and landings for several management strategies and incorporate the uncertainty in
future stock productivity. Parameterization of the simulation model includes most demersal stocks and fishing fleets in the North Sea. Our results shed light on the benefits of different strategies that aim for achieving both the biological and the economic objectives of the European Common Fisheries Policy.

Contact: Clara Ulrich, DTU Aqua, Charlottenlund Castle, 2920 Charlottenlund, Denmark. clu@aqua.dtu.dk

5.3. Innovative management measure 2 and abstract 2 – Management of the North Sea flatfish fishery: exploring alternative ITQ systems

Authors: Hamon, K.G. (LEI), Bartelings, H. (LEI), Buisman, E. (LEI), Oostenbrugge, J.A.E. (LEI), de Vos, B. (LEI)

For decades, the management of the Dutch flatfish fishery has included a variety of measures including individual transferable quotas (ITQ) and the implementation of a co-management system without succeeding in recovering the fishery to sustainable levels partly because of the multispecies aspect of the fishery with the two main commercial species being two main species sole (Solea solea) and plaice (Pleuronectes platessa). Although fishers must hold quota for both species, discarding and highgrading are allowed i.e. catch can legally be above the TAC. Only since the long-term management plan was implemented in 2008, have the stocks of the sole and plaice recovered close to or within safe biological limits. In this study we investigate the Dutch ITQ system and the influence of its design on the behaviour of the fishers and subsequently on the outcomes of the flatfish management. We use a bioeconomic model to explore the impacts of changing the trade mechanism and trade structure of individual quotas and for example allowing international tradability of quota. The socio-economic effects of quota tradability are examined.

Contact: Katell G. Hamon, LEI- Wageningen UR, Katell.hamon@wur.nl

5.4. Agenda of the forthcoming North Sea RAC meeting

Workshop: How to determine long term targets for North Sea multi annual multi species plans

7th July 2014

Bilderberg Garden Hotel, Amsterdam (the Netherlands)

We are pleased to invite you to the next Myfish workshop on the 7th of July 2014. If you wish to attend this event, please fill out the registration form (sent with this agenda) and send it to Bas Ploomp at Garden.Banquet@bilderberg.nl before Friday 27th June. The registration form covers both accommodation and food & beverage (F&B) requirements, so all participants are requested to complete it.

For stakeholders (non-project attendees), accommodation, food and beverage costs will be reimbursed by Myfish, subject to certain rules and regulations, as outlined below.
Setting the scene in relation to the current ICES advice

Outlining important trade-offs and scenarios: multi species aspects and mixed fisheries
Discussion of multispecies scenarios
Discussion of mixed whitefish and flatfish fisheries scenarios and their relation to the discard ban
Rating of scenarios: which would you prefer as the aim of North Sea fisheries management?
Impact of tradability of quota on the fishery with focus on the North Sea flatfish fisheries
How can MyFish and SOCIOEC work together with you to improve future management in the North Sea?

The North Sea Advisory Council

NSRAC Demersal Working Group
Radisson Blu Hotel
Boeing Avenue 2, 1119 PB Schiphol-Rijk
Amsterdam
Tuesday 8th July, 2014 at 10.30am

Meeting Agenda

AGENDA

1. Welcome and Introductions
 Apologies
 Adoption of the Agenda (Paper 1.1)

2. Minutes of Previous Meeting
 Paper 2.1 The report of the meeting held in Paris 8th April 2014 (For Approval)

3. Matters Arising / Action Points

4. Landings Obligation
 Paper 4.1 Landings Obligation Vision (For Approval)
Next Steps, development of NSAC advice

5. **Drift Net Fisheries**
 Paper 5.1 Response to proposed ban on drift net fishing (For Approval)

6. **Sea Bass**
 Paper 6.1 EAA paper on Sea Bass (For Discussion)
 Proposal for joint workshop with NWWAC

7. **Pulse Fishery**
 Kees Verborgt - NL authority,
 Nathalie Steins - Imares
 Hans Polet - Ilvo

8. **Lunch**

9. **Long Term Management Plans**
 Nephrops

10. **ICES Advice**
 Update from Carmen Fernandez

11. **Any Other Business**
 Date and location of next meeting,
 To be confirmed.
6. Pelagics Case Study - Minutes from the SOCIOEC pelagic case study presentation under the meeting “MYFISH Widely Ranging Fish stakeholder workshop”

Author: Thomas Thøgersen (KU)

Date and venue: 6th February 2014, 09:00-16:00, Parkhotel The Hague, The Netherlands

Participants: Miguel Nuevo (EFCA), Dominic Rihan (EC), Angus Cragg (DEFRA), Kari Strange (Wageningen University and Research center), Marloes Kraan (IMARES), Gerard van Balsfoort (PFA), Verana Ohms (PRAC), Rachel Tiller (NTNU), Niko Boogaard (Union CNV), Mikael von Deurs (DTU-Aqua), Katja Engberg (IMR), Lotte Worsoe Clausen (DTU-Aqua), Jonathan Beecham (CEFAS), Christine Absil (Seas at Risk), Reinier Hille Ris Lambers (WWF), Claus Reedtz-Sparrevoyn (Danish Pelagic PO), Niels Hintzen (IMARES), Thomas Thøgersen (UCPH)

ITQ’s across countries

At this stakeholder meeting, a short presentation was given by the UCPH on the analysis of the economic gains by expanding the current management systems of herring and mackerel to be tradable across countries. The idea behind the proposed management system is to reduce the fishing capacity of the pelagic fisheries within the European Union and to increase the total profitability of the fishing fleets.

In order to get constructive feedback from the stakeholders, the presentation had focus of the key assumptions of the model, which could give rise to concern of the stakeholders. Among these was the assumption of fixed catch compositions and the thresholds for the maximum number of fishing days per year. These assumptions were not commented further by the stakeholders. However, it was acknowledged that the actual number of fishing days for some years can be fairly low for specialized pelagic vessels, since pelagic fishing quotas can vary considerable from year to year.

Some stakeholders indicated that it was an interesting case study, but that such an international ITQ system never would be introduced under the current system. The reason that some stakeholders believed that such a management system would never become a real policy was that they believed that the countries expected to lose on such a system would oppose the idea. The observation is interesting and it might be correct. It is, though, not up to this project to discuss the political processes and challenges, but only to present the scientific, social and economic consequences of novel management measures.

Some stakeholders indicated that Dutch pelagic fleet is both significant and competitive and that it would be interesting to include these in the analyses. The comment is fair and expected. The Dutch fishing fleets catch a fair share of the total mackerel and herring fisheries, but the fleets do also catch a broad range of other species. Therefore, within the current modelling framework of comparing fleets that is specialized in the mackerel and herring fisheries, it is difficult to include these vessels in the analysis. Nevertheless, it is acknowledged that the Dutch fishing fleet also will affect the distribution and gains from an international ITQ system. The magnitude of the distribution and gains is, though, not possible to determine with the current fleet segment aggregation under the European
Data Collection Framework.
7. References

Journal Officiel de la République Française (JORF) n°301 du 29 décembre 2006 page 19953 texte n°104: Arrêté du 26 décembre 2006 établissant les modalités de répartition et de gestion collective des possibilités de pêche (quotas de captures et quotas d’effort de pêche) des navires français immatriculés dans la Communauté européenne. NOR: AGRM0602585A.

Socioec, 2012. Minutes if the first Regional Seas Stakeholder contacts, deliverable D 6.0.1., 25 pages

Socioec, 2013. Report on focus groups with stakeholders/experts/fishers at CS level (qualitative analysis and inputs for simulations), deliverable D 53, 37 pages